This article was downloaded by: On: 22 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Asian Natural Products Research

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713454007

Synthesis and antimicrobial activity of 3-octyloxy-8-alkyljatrorrhizine

derivatives

Li-Jun Wang^a; Xiao-Li Ye^b; Zhu Chen^a; Xue-Gang Li^a; Qing-Lei Sun^c; Bao-Shun Zhang^a; Xiao-Gang Cao^a; Gang Yu^a; Xiao-Hua Niu^a

^a Chemistry Institute of Pharmaceutical Resources, School of Pharmaceutical Science, Southwest University, Chongqing, China ^b School of Life Science, Southwest University, Chongqing, China ^c Shandong Analysis and Test Center, Shandong Academy of Science, Jinan, China

To cite this Article Wang, Li-Jun , Ye, Xiao-Li , Chen, Zhu , Li, Xue-Gang , Sun, Qing-Lei , Zhang, Bao-Shun , Cao, Xiao-Gang , Yu, Gang and Niu, Xiao-Hua(2009) 'Synthesis and antimicrobial activity of 3-octyloxy-8-alkyljatrorrhizine derivatives', Journal of Asian Natural Products Research, 11: 4, 365 — 370

To link to this Article: DOI: 10.1080/10286020902727447 URL: http://dx.doi.org/10.1080/10286020902727447

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis and antimicrobial activity of 3-octyloxy-8-alkyljatrorrhizine derivatives

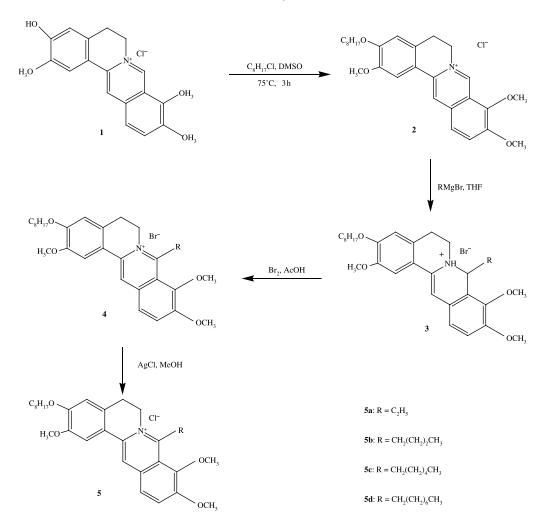
Li-Jun Wang^a, Xiao-Li Ye^b, Zhu Chen^a, Xue-Gang Li^a*, Qing-Lei Sun^c, Bao-Shun Zhang^a, Xiao-Gang Cao^a, Gang Yu^a and Xiao-Hua Niu^a

^aChemistry Institute of Pharmaceutical Resources, School of Pharmaceutical Science, Southwest University, Chongqing 400716, China; ^bSchool of Life Science, Southwest University, Chongqing 400715, China; ^cShandong Analysis and Test Center, Shandong Academy of Science, Jinan 250014, China

(Received 5 November 2008; final version received 9 December 2008)

By introducing octyloxy to C-3 and alkyl groups to C-8 of jatrorrhizine, a series of 3-octyloxy-8-alkyljatrorrhizine derivatives were synthesized and their antimicrobial activities were evaluated *in vitro*. The results indicated that the derivatives exhibited high antimicrobial activities, especially against Gram-positive bacteria. The 3-octyloxy-8-butyljatrorrhizine displayed the highest antimicrobial activity in all compounds. Their structure–activity relationships were discussed.

Keywords: jatrorrhizine; 3-octyloxy-8-alkyljatrorrhizine derivatives; antimicrobial activity


1. Introduction

Jatrorrhizine (1) is a kind of quaternary protoberberine alkaloid (QPA) and is one of the active constituents of *Coptis chinensis* Franch. (Ranunculaceae), a traditional Chinese herbal medicine [1]. It has antimicrobial [2], hypoglycemic [3], antiarrhythmic [4], and antioxidant [5] activities and low host toxicity [6]. Substituted derivatives of QPA in the A, C, or D ring exhibit changes in their pharmacological effects. Iwasa et al. [7] reported that dioxymethylene replacement at the C-2 and C-3 positions in the A ring, as well as 8-alkyl- or 13-alkyl-substitution [8,9] increased, but 13-hydroxy-substituted derivatives decreased their antibacterial activity [10]. Duk et al. [11] reported that benzyl introduced to 13-C of berberine and berberrubine increased the antifungal activities. The antimicrobial activities of 8-alkylberberine derivatives increased with the aliphatic chain

elongation and then decreased gradually when the alkyl chain exceeds eight carbon atoms [12]. In our previous study, 3alkoxyjatrorrhizine derivatives were synthesized and their antimicrobial activities and toxicity were tested in vitro. The antimicrobial activities of the substituted derivatives were 32-1000 times higher than that of jatrorrhizine (1), which increased as the aliphatic chain was elongated and then decreased slightly when the alkyl chain exceeded eight carbon atoms. 3-Octyloxyjatrorrhizine (2) displayed the highest antimicrobial activity of all 3-alkoxyjatrorrhizine derivatives [13]. In this study, we synthesized a series of 3-octyloxy-8-alkyljatrorrhizine derivatives by introducing alkyl groups in C-8 and octyloxy to C-3 of jatrorrhizine and their antimicrobial activities were evaluated in vitro to study their structure-activity relationships.

^{*}Corresponding author. Email: xuegangli2000@yahoo.com.cn

L.-J. Wang et al.

Scheme 1. Synthetic route for compounds 5a-d.

2. Results and discussion

The 3-octyloxy-8-alkyljatrorrhizine derivatives were synthesized successfully (Scheme 1). The yield of the derivatives was decreased from 77.9 to 47.4% as the aliphatic chain length increased. The ¹H NMR spectrum showed that the proton signals at δ 9.89 were disappeared and some new proton signals of CH₂/CH₃ appeared. The compounds were deeply analyzed by the ¹³C NMR, gCOSY, DEPT, and HMQC spectra. The results showed that the alkyl group was attached in position C-8.

The antimicrobial activities of the compounds 5a-c were higher than that of 3-octyloxyjatrorrhizine (2) and displayed more potency against bacteria than fungus (Table 1). The antimicrobial activities of compounds 5a-d did not increase as the aliphatic chain length increased. The compound 3-octyloxy-8-butyljatrorrhizine (5b) showed the strongest activity against the microbes tested. The antimicrobial activities of compound 3-octyloxy-8-octyljatrorrhizine were even lower than compound 3-octyloxyjatrorrhizine (2), which was not similar to the

Table 1. The minimum inhibitory	ry concentrat	ion of compou	concentration of compounds $2,5a{-}d~(\mu\text{g/ml}).$	ug/ml).				
			Gram-]	Gram-positive bacteria		Gram-neg	Gram-negative bacteria	Runoi.
Compound	No.	S. aureus	B. subtilis	S. aureus B. subtilis M. tetragenus B. megaterium	B. megaterium	E. coli	E. coli S. enteritidis	C. tropicali
Berberine	Control	250	125	125	125	250	500	1000
Jatrorrhizine	1	320	640	I	I	320	640	I
3-Octyloxy-jatrorrhizine	7	0.1563	1.25	20	20	0.625	1.25	80
3-Octyloxy-8-ethyljatrorrhizine	5a	0.0781	0.3125	5	10	0.625	0.625	40
3-Octyloxy-8-butyljatrorrhizine	5b	0.0391	0.1563	1.25	1.25	0.3125	0.625	20
3-Octyloxy-8-hexyljatrorrhizine	5c	0.0781	0.625	2.5	2.5	1.25	5	80
3-Octyloxy-8-octyljatrorrhizine	5d	0.625	1.25	20	20	2.5	5	160

L

is

The given values are means of three experiments. "-" showed no values given. Tween-80 was used as a blank and berberine as positive control.

8-alkylberberine derivatives and 3-alkoxyjatrorrhizine derivatives [12,13]. We may conclude that by introducing the suitable alkyl groups to jatrorrhizine can increase the antibacterial activity.

3. Experimental

Journal of Asian Natural Products Research

3.1 General experimental procedures

Melting points were determined on an RD-2C electrothermal melting point apparatus and are uncorrected. The UV spectra were recorded on a Hitachi U-1800 spectrophotometer. The IR spectra were carried out on a Perkin-Elmer one IR spectrophotometer. The ¹H and ¹³C NMR spectra were recorded on a Varian INOVA 600 (600 MHz) using TMS as the internal standard and DMSO- d_6 as solvent. TLC analysis was used to confirm the purity of the compounds, which was performed on silica gel-GF254 thin layers and developed with a moving phase of CHCl₃/ MeOH (3:1) and C₆H₆/EtOAc/MeOH/i C₃H₇OH/NH₃ (6:3:1.5:1.5:0.5).

3.2 Synthesis of 3-octyloxyjatrorrhizine

Jatrorrhizine was extracted and purified from Rhizoma coptidis according to Ref. [14]. The purity of jatrorrhizine used to synthesize its derivatives was up to 98%. The 3-octyloxyjatrorrhizine was synthesized according to our previous report [13]. The octyl bromate (18 mmol) in DMSO (20 ml) was slowly added to the suspension of jatrorrhizine (15 mmol) and KOH (16.5 mmol) in DMSO (20 ml). After 3 h of reflux at 75°C, the above reactants were poured into 100 ml of cool water and the 3-octyloxyjatrorrhizine bromates would be precipitated immediately. The crude 3-octyloxyjatrorrhizine was washed with distilled water and ethyl acetate thrice, respectively, and be recrystallized thrice from MeOH at -20° C gave 3-octyloxyjatrorrhizine 2 (5.35 g) in 73.4% yield.

3.3 Synthesis of 3-octyloxy-8alkyljatrorrhizine derivatives

The 3-octyloxy-8-alkyljatrorrhizine derivatives were synthesized according to Ref. [15].

L.-J. Wang et al.

Grignard reagents prepared from Mg turnings (8.8 mmol) and the corresponding alkyl bromides (8 mmol) in absolute THF (10 ml) were slowly added to the suspension of dry 3octyloxyjatrorrhizine chloride (2 mmol) in absolute THF (10 ml) under N₂ at 0°C. After 2h of reflux, the 3-octoxyl-8-alkyl-dihydrojatrorrhizine bromides (3) were obtained. A mixture of hydrobromides, Br₂ (1.8 mmol) and THF (30 ml), was heated at 50°C; no further change in the composition of the reaction mixture was evident by TLC. After cooling, the precipitates were filtered and washed with 10% Na₂S₂O₅ solution and H₂O, respectively. The crude 3-octyloxy-8-alkyljatrorrhizine bromides were obtained, which were crystallized from MeOH. Thereafter, these bromides were added into hot MeOH containing AgCl (1.8 mmol) and converted into corresponding chlorides. Melting points, UV, IR, ¹H and ¹³C NMR, and TLC were used to identify the structures of 5a-d.

3.3.1 3-Octyloxy-8-ethyljatrorrhizine (5a)

 $R_{\rm f}$ = 0.32, yield: 77.9%; mp 146–150°C; UV (CH₃OH) $\lambda_{\rm max}$ (nm): 435, 350, 243; IR (KBr) $\nu_{\rm max}$ (cm⁻¹): 3075 (CH_{Ar}), 2923 and 2854 (CH), 1604 (Ar), 1520 (C=N), 1469 and 1354 (C−H), 1243–1038 (C−O), 734 ((−CH₂−)_n, n ≥ 4); ¹H and ¹³C NMR spectral data were shown in Table 2. Elemental analysis: Found: C, 70.10%; H, 7.78%; N, 2.72%; Cl, 6.91%; calcd for C₃₀H₄₀NCIO₄: C, 70.11%; H, 7.79%; N, 2.73%; Cl, 6.91%.

3.3.2 3-Octyloxy-8-butyljatrorrhizine (5b)

*R*_f = 0.34, yield: 64.0%; mp 143−147°C; UV (CH₃OH) λ_{max} (nm): 438, 350, 243; IR (KBr) ν_{max} (cm⁻¹): 3071 (CH_{Ar}), 2929 and 2856 (CH), 1605 (Ar), 1520 (C=N), 1463 and 1352 (CH), 1283−1016 (C−O), 730 ((−CH₂−)_n, $n \ge 4$); ¹H and ¹³C NMR data were shown in Table 2. Elemental analysis: Found: C, 70.92%; H, 8.12%; N, 2.58%; Cl, 6.57%; calcd for C₃₂H₄₄NCIO₄: C, 70.91%; H, 8.13%; N, 2.59%; Cl, 6.56%. 3.3.3 3-Octyloxy-8-hexyljatrorrhizine (5c) $R_{\rm f} = 0.37$, yield: 63.0%; mp 137–141°C; UV (CH₃OH) $\lambda_{\rm max}$ (nm): 439, 352, 243; IR (KBr) $\nu_{\rm max}$ (cm⁻¹): 3071 (CH_Ar), 2927 and 2855 (CH), 1605 (Ar), 1519 (C=N), 1466 and 1349 (CH), 1278–1018 (C-O), 724 ((-CH₂--)_n, $n \ge 4$); ¹H and ¹³C NMR spectral data were shown in Table 2. Elemental analysis: Found: C, 71.65; H, 8.42; N, 2.45; Cl, 6.24; calcd for C₃₄H₄₈NCIO₄: C, 71.64; H, 8.43; N, 2.46; Cl, 6.23.

3.3.4 3-Octyloxy-8-octyljatrorrhizine (5d)

 $R_{\rm f}$ = 0.39, yield: 47.4%; mp 133−137°C; UV (CH₃OH) $\lambda_{\rm max}$ (nm): 441, 353, 243; IR (KBr) $\nu_{\rm max}$ (cm⁻¹): 3072 (CH_{Ar}), 2926 and 2854 (CH), 1605 (Ar), 1520 (C=N), 1466 and 1349 (CH), 1282−1020 (C−O), 724 ((−CH₂−)_n, $n \ge 4$); ¹H and ¹³C NMR spectral data were shown in Table 2. Elemental analysis: Found: C, 72.31; H, 8.68; N, 2.33; Cl, 5.95; calcd for C₃₆H₅₂NCIO₄: C, 72.30; H, 8.70; N, 2.34; Cl, 5.94.

3.4 Antimicrobial activity

The compounds of 2, 5a-d were investigated in vitro for antimicrobial activity against Gram-positive (G+) bacteria, Gram-negative (G-) bacteria, and a fungus. The minimum inhibitory concentration was evaluated by using the two-fold serial dilution test [16]. Compounds 2, 5a-d were dissolved in H₂O containing 1% Tween-80 and diluted to different concentrations from 0.0012 to 160 µg/ml with liquid medium. The mixtures of serious dilutions of compounds and the $(2 \times 10^8 \, \text{cfu/ml})$ microbes in broth medium were incubated at 37°C for 24 h for bacteria and at 25°C for 48 h for the fungus. Microbial growth was examined by measuring the absorbance at 655 nm with a spectrophotometer [17]. The H_2O/T ween-80 was used as a blank and berberine as positive control. All experiments were run in triplicate.

No. δ_{H_1} δ_{G_1} δ_{G_1} δ_{G_1} δ_{G_2} δ_{G_1} δ_{H_1} δ_{G_2} δ_{G_1} δ_{G_1} δ_{H_1} δ_{G_2} δ_{G_1} δ_{H_1} δ_{G_1} δ_{G_1} δ_{G_1} δ_{G_1} δ_{G_2} δ_{G_1} δ_{G_1} δ_{G_2} δ_{G_1} δ_{G_1} δ_{G_2} δ_{G_1} δ_{G_1} δ_{G_2} δ_{G_2} δ_{G_1} δ_{G_1} δ_{G_2} δ_{G_2} δ_{G_1} δ_{G_1} δ_{G_2} δ_{G_2} δ_{G_1} δ_{G_2} δ_{G_2} δ_{G_1} δ_{G_2} δ_{G_2} δ_{G_2} δ_{G_1} δ_{G_1} δ_{G_2} δ_{G_2} δ_{G_1} δ_{G_1} δ_{G_2} δ_{G_2} δ_{G_1} δ_{G_1} δ_{G_1} δ_{G_2} δ_{G_2} δ_{G_1} δ_{G_1} δ_{G_1} δ_{G_1} δ_{G_2} δ_{G_2} δ_{G_1} δ_{G_1} δ_{G_1} δ_{G_2} δ_{G_2} δ_{G_1} δ_{G_1} δ_{G_2} δ_{G_2} δ_{G_1} δ_{G_1} δ_{G_2} δ_{G_2} δ_{G_1} δ_{G_1} δ_{G_2} δ_{G_2} δ_{G_1} δ_{G_1} δ_{G_2} δ_{G_1} δ_{G_1} δ_{G_2} δ_{G_2} δ_{G_1} δ_{G_1} δ_{G_2} δ_{G_1} δ_{G_2} δ_{G_1} δ_{G_2} δ_{G_1} δ_{G_2} δ_{G_1} δ_{G_2} δ_{G_2} δ_{G_1} δ_{G_1} δ_{G_2} δ_{G_2} δ_{G_1}	58		5b		5c		5d	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	δ _H	$\delta_{\rm C}$	$\delta_{ m H}$	$\delta_{\rm C}$	$\delta_{\rm H}$	$\delta_{\rm C}$	δ _H	$\delta_{\rm C}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(s, 1H)	109.2	7.63 (s, 1H)	109.1	7.63 (s, 1H)	109.8	7.63 (s, 1H)	109.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I	150.7 148.7	I	150.7 148.6	I	151.5	I	151.5 140.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(s. 1H)	111.3	– 7.11 (s. 1H)	111.2	– 7.11 (s. 1H)	111.9	7.11 (s. 1H)	112.0
$\begin{array}{rcl} 4.84 (t, 2H, J = 6.0Hz) \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	(t, 2H, $J = 6.0 \mathrm{Hz}$)	26.1	3.17 (t, 2H, $J = 6.0$ Hz)	26.2	3.17 (t, 2H, $J = 6.0$ Hz)	27.0	3.17 (t, 2H, $J = 6.0$ Hz)	27.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		49.5	4.82 (t, 2H, $J = 6.0 \mathrm{Hz}$)	49.6	4.81 (t, 2H, $J = 6.0$ Hz)	50.4	4.81 (t, 2H, $J = 6.0 \text{Hz}$)	50.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	162.0	I	160.9	I	161.6	I	161.7
8.20 (d, 1H, $J = 9.0$ Hz) 125.1 8.20 (d, 1H, $J = 9.0$ Hz) 125.1 8.05 (d, 1H, $J = 9.0$ Hz) 13.93 (s, 1H) 19.6 8.88 (s, 1H) 3.93 (s, 3H) 56.1 3.93 (s, 3H) 56.1 3.93 (s, 3H) 56.1 3.93 (s, 3H) 56.1 3.93 (s, 2H) 1.77 (m, 2H) 1.77 (m, 2H) 1.77 (m, 2H) 1.77 (m, 2H) 1.44 (m, 2H) 1.28 - 1.35 (m, 2H) 1.28 - 1.34 (m, 2H) 1.28 - 1.35 (m, 2H) 1.28 - 1.34 (m, 2H) 1.28 - 1.35 (m, 2H) 1.28 - 1.35 (m, 2H) 1.28 - 1.34 (m, 2H) 1.28 - 1.35 (m, 2H) 1.28 - 1.34 (m, 2H) 1.28 - 1.35 (m, 2H) 1.28 - 1.34 (m, 2H) 1.28 - 1.35 (m, 2H) 1.28 - 1.34 (m, 2H) 1.28 - 1.35 (m, 2H) 1.28 - 1.34 (m, 2H) 1.28 - 1.35 (m, 2H) 1.28 - 1.34 (m, 2H) 1.28 - 1.35 (m, 2H) 1.28 - 1.34 (m, 2H) 1.28 - 1.35 (m, 2H) 1.28 - 1.34 (m, 2H) 1.28 - 1.35 (m, 2H) 1.28 - 1.34 (m, 2H) 1.28 - 1.35 (m, 2H) 1.28 - 1.34 (m, 2H) 1.28 - 1.34 (m, 2H) 1.21 1.28 - 1.34 (m, 2H) 1.22 (m, 2H) 1.21 1.28 - 1.34 (m, 2H) 1.21 1.28 - 1.3	1	1455	1	152.2	1	153.0	1	153.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		125.1	8.20 (d. 1H. $J = 9.0$ Hz)	125.0	8.20 (d. 1H. $J = 9.0$ Hz)	125.8	8.20 (d. 1H. $J = 9.0$ Hz)	125.8
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1H, J =	124.4	8.05 (d, 1H, $J = 9.0$ Hz)	124.5	8.05 (d, 1H, $J = 9.0$ Hz)	125.3	8.05 (d, 1H, J = 9.0 Hz)	125.2
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(s, 1H)	119.6	8.88 (s, 1H)	119.7	8.87 (s, 1H)	120.4	8.87 (s, 1H)	120.3
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(s, 3H)	56.1	3.93 (s, 3H)	56.1	3.93 (s, 3H)	56.9	3.93 (s, 3H)	56.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(t, 2H)	68.3	4.05 (t, 2H)	68.3	4.05 (t, 2H)	69.1	4.05 (t, 2H)	69.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(m, 2H)	28.6	1.76 (m, 2H)	28.5	1.75 (m, 2H)	29.3	1.77 (m, 2H)	29.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	25.4		25.4	1.44 (m, 2H)	26.2	1.43 (m, 2H)	26.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		28.6		28.6	1.28-1.38 (m, 2H)	29.4	1.28–1.38 (m, 2H)	29.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.35 (m,	28.5		28.6	1.28–1.38 (m, 2H)	29.4	1.28-1.38 (m, 2H)	29.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.35 (m,	31.1 22 0		51.2 22.0	1.28-1.38 (m, 2H) 1 28-1 38 (m, 2H)	51.9 8 CC	1.28-1.38 (m, 2H) 1.28_1.38 (m, 2H)	32.U 22.8
4.07 (s, 3H) 61.5 4.07 (s, 3H) 4.07 (s, 3H) 56.9 4.07 (s, 3H) 56.9 4.07 (s, 3H) 56.9 4.07 (s, 3H) 3.78 (br, 2H) 25.6 3.78 (br, 2H) 1.47 (t, 3H) 12.3 1.80 (m, 2H) 1.62 (m, 2H) 1.62 (m, 2H) 1.03 (t, 3H) 1.03 (t, 3H)	í í	13.9	f	13.9		14.7	0.88 (t, 3H)	14.7
 4.07 (s, 3H) 56.9 4.07 (s, 3H) 3.78 (br, 2H) 2.5.6 3.78 (br, 2H) 1.47 (t, 3H) 1.2.3 1.80 (m, 2H) 1.62 (m, 2H) 1.63 (t, 3H) 	(s, 3H)	61.5	4.07 (s, 3H)	61.4	4.07 (s, 3H)	62.2	4.07 (s, 3H)	62.2
25.6 3.78 (br, 2H) 12.3 1.80 (m, 2H) 1.62 (m, 2H) 1.03 (t, 3H)	(s, 3H)	56.9	4.07 (s, 3H)	56.9	4.06 (s, 3H)	57.7	4.06 (s, 3H)	57.7
12.3 1.80 (m, 2H) 1.62 (m, 2H) 1.03 (t, 3H)	(br, 2H)	25.6	3.78 (br, 2H)	32.0	3.77 (br, 2H)	33.0	3.78 (br, 2H)	33.0
	(t, 3H)	12.3	1.80 (m, 2H)	29.8 27.5	1.80 (m, 2H)	29.7	1.80 (m, 2H)	30.1
			1.02 (III, ZII) 1.03 (t. 3H)	13.6	1.28–1.38 (m. 2H)	20.2 28.6	1.29 (m, 211) 1.41 (m, 2H)	20.2 29.3
6" 1"			~		1.28-1.38 (m, 2H)	22.8	1.28-1.38 (m, 2H)	28.6
					0.93 (t, 3H)	14.7	1.28–1.38 (m, 2H)	31.9 9 1 0
, 81							0.88 (t. 3H)	14.7

369

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20673084), the Natural Science Foundation Project of CQ CSTC (2008BB5257), and the Key Technologies R&D Program of CQ CSTC (2008AA5021).

References

- L.J. Yuan, D.W. Tu, X.L. Ye, and J.P. Wu, *Plant Foods Hum. Nutr.* 61, 139 (2006).
- [2] Y. Yu, Z.B. Yi, and Y.Z. Liang, *FEBS Lett.* 581, 179 (2007).
- [3] Y. Fu, B.R. Hu, Q. Tang, Q. Fu, and J.Z. Xiang, J. Huazhong Univ. Sci. Technol. (Med. Edition) 25, 491 (2005).
- [4] H. Han and D.C. Fang, Acta Pharmacol. Sin. 18, 85 (1989).
- [5] L. Racková, M. Májeková, D. Kostálová, and M. Stefek, *Bioorg. Med. Chem.* **12**, 4709 (2004).
- [6] A. Volleková, D. Kotálová, V. Kettmann, and J. Tóth, *Phytother. Res.* 17, 834 (2003).
- [7] K. Iwasa, Y. Nishiyama, M. Ichimaru, M. Moriyasu, H.S. Kim, and Y. Wataya, *Eur. J. Med. Chem.* 34, 1077 (1999).

- [8] K. Iwasa, M. Kamigauchi, M. Sugiura, and H. Nanba, *Planta Med.* 63, 196 (1991).
- [9] K. Iwasa, D.U. Lee, S.I. Kang, and W. Wiegrebe, J. Nat. Prod. 61, 1150 (1998).
- [10] K. Iwasa, M. Kamigauchi, M. Ueki, and M. Taniguchi, *Eur. J. Med. Chem.* **31**, 69 (1996).
- [11] P. Duk, J.H. Lee, H.K. Sung, H.K. Tae, S.M. Jae, and U.K. Sung, *Bioorg. Med. Chem. Lett.* 16, 3913 (2006).
- [12] Y. Yang, X.L. Ye, X.G. Li, J. Zheng, B.S. Zhang, and L.J. Yuan, *Planta Med.* **73**, 602 (2007).
- [13] L.J. Wang, X.L. Ye, X.G. Li, Q.L. Sun, G. Yu, X.G. Cao, Y.T. Liang, H.S. Zhang, and J.Z. Zhou, *Planta Med.* **74**, 290 (2008).
- [14] Y.M. Feng and K.M. Xun, China J. Chin. Mater. Med. 14, 29 (1989).
- [15] Y. Yang, X.L. Ye, J. Zheng, B.S. Zhang, and X.G. Li, *Chin. J. Org. Chem.* 27(11), 1438 (2007).
- [16] X.R. Ma, Drug Microbial Test Handbook (People Health Publishing House, Beijing, 2001).
- [17] X.L. Ye, X.G. Li, L.J. Yuan, L.H. Ge, B.S. Zhang, and S.B. Zhou, *Colloids Surf.* A: Physicochem. Eng. Asp. **301**, 412 (2007).